
module ShamirSecretSharing

Sepcification for simple Shamir Secret Sharing. This is not a veriable secret sharing scheme.

We specify that dealer first sends shares to all players, and once all players have received their
shares the can eventually reconstruct the secret.

We do not deal with the communication protocol between players to send their shares to each
other before reconstructing the secret.

We use a trick from https://github.com/tlaplus/Examples/blob/master/specifications/ewd840/SyncTerminationDetection.tla

to detect that all players have reconstructed the secret and we have detected it

extends Integers, Sequences, Reals, TLC

constant
Dealer , The dealer sharing the secret with the players

Players, Set of all players

Coefficients The coefficient of the polynomial. These are provided by the model

variables
shares, Function mapping Player to computed shares

shares sent , Function mapping Player to shares received

shares received , Function mapping Player to received shares

reconstructed , Function mapping Player to flag if secret

has been successfully constructed

allReconstructDetected We detected all reconstructions

and can therefore terminate

vars
∆
= ⟨shares, shares sent , shares received , reconstructed , allReconstructDetected⟩

NoValue
∆
= − 1

Init
∆
=

Compute shares as a + bx + cxˆ2

∧ shares = [p ∈ Players 7→ Coefficients[1] + Coefficients[2] ∗ p + Coefficients[3] ∗ p2]
∧ shares sent = [p ∈ Players 7→ NoValue]
∧ shares received = [p ∈ Players 7→ NoValue]
∧ reconstructed = [p ∈ Players 7→ false]
∧ allReconstructDetected = false

The type invariant for all variables.

TypeOK
∆
=
∧ shares ∈ [Players → Int ]
∧ shares sent ∈ [Players → Int ]
∧ shares received ∈ [Players → Int ]
∧ reconstructed ∈ [Players → boolean ]
∧ allReconstructDetected ∈ boolean

allReconstructed
∆
= ∀ p ∈ Players : reconstructed [p]

1



Send the share to Player p.

SendShare(p)
∆
=

∧ shares sent [p] = NoValue
Send a share that has not been sent to anyone

∧ shares sent ′ = [shares sent except ! [p] = shares[p]]
∧ unchanged ⟨shares, shares received , reconstructed , allReconstructDetected⟩

Receive the share at Player p. It should have been sent before.

ReceiveShare(p)
∆
=

∧ shares received [p] = NoValue
∧ shares sent [p] ̸= NoValue
∧ shares received ′ = [shares received except ! [p] = shares sent [p]]
∧ unchanged ⟨shares, shares sent , reconstructed , allReconstructDetected⟩

Reconstruct secret with Players p and q. The payers should have receieved share.

Reconstruct(p, q)
∆
=

∧ ∀ t ∈ Players : shares received [t ] ̸= NoValue
∧ p ̸= q
∧ shares received [p] ̸= NoValue
∧ shares received [q ] ̸= NoValue
∧ reconstructed [p] = false
We don’t specify how the secret is reconstructed, just that it is

reconstructed using shares of all two player combinations

∧ reconstructed ′ = [reconstructed except ! [p] = true]
∧ allReconstructDetected ′ ∈ {allReconstructDetected , allReconstructed ′}
∧ unchanged ⟨shares, shares sent , shares received⟩

DetectReconstructed
∆
=

∧ allReconstructed
∧ allReconstructDetected ′ = true
∧ unchanged ⟨shares, shares sent , shares received , reconstructed⟩

The next step either sends shares, receieves them or reconstructs the secret.

Next
∆
= ∃ p, q ∈ Players :

∨ SendShare(p)
∨ ReceiveShare(p)
∨ Reconstruct(p, q)
∨DetectReconstructed

Spec
∆
=
∧ Init

2



∧2[Next ]vars

Liveness states that eventually all players reconstruct the secret.

Liveness
∆
= ∀ p, q ∈ Players :

WFvars(ReceiveShare(p) ∧ Reconstruct(p, q) ∧DetectReconstructed)

Stability - once all reconstructions are detected, all Players′ secrets

remain reconstructed.

Stable
∆
= 2(allReconstructDetected ⇒ 2allReconstructed)

For a fair specification, we assure the spec takes next steps and liveness is guaranteed.

FairSpec
∆
= Spec ∧ Liveness

3


