
module P2PBroadcast
The specification caputers the DAG based reliable broadcast to disseminate messages over a peer

to peer network.

The broadcast enables nodes to know which nodes have revceived the message by using implicit
acknowledgements. The broadcast is not a BFT broadcast. We depend on the higher layers to
provide that.

Does this open this broadcast to a DDoS attack? Yes, and our argument remains that p2p network
can resist DDoS attacks by other means.

First pass - We assume no processes failures or messages lost.

extends Naturals, Sequences

constant
Proc, Set of processes

Data,
Nbrs

variables
channels, All channels between nodes, can be indexed as

channels[from][to] and channels[to][from] and has a

queue of messages

sent by , Function from message to all Proc that have sent it

sent , Same as P2PBroadcastSpec

received by Same as P2PBroadcastSpec

vars
∆
= ⟨sent by , received by , channels, sent⟩

Message
∆
= [from : Proc, data : Data]

Init
∆
=
∧ sent by = [m ∈ Message 7→ {}]
∧ received by = [m ∈ Message 7→ {}]
∧ channels = [⟨p, q⟩ ∈ Nbrs 7→ ⟨⟩] Messages delivered in order

∧ sent = {}

TypeInvariant
∆
=

∧ sent by ∈ [Message → subset Proc]
∧ received by ∈ [Message → subset Proc]
∧ channels ∈ [Nbrs → Seq(Message)]
∧ sent ∈ subset Message

SendTo(m, p) - send message m to neighbour p

Sending to self is required as then the message is in the recv list as well.

SendTo(m, p)
∆
=
∧m.from /∈ sent by [m] Don’t send again

1



∧ ⟨m.from, p⟩ ∈ Nbrs Send only to neighbours

∧ sent by ′ = [sent by except ! [m] = @ ∪ {m.from}]
∧ sent ′ = sent ∪ {m}
∧ channels ′ = [channels except ! [⟨m.from, p⟩] = Append(@, m)]
∧ unchanged ⟨received by⟩

RecvAt(m, q) - receive message m at q. This can be received from forwards

RecvAt(m, p, q)
∆
=

∧ ⟨p, q⟩ ∈ Nbrs receive only at neighbours

∧ channels[⟨p, q⟩] ̸= ⟨⟩ receive if there is a message

∧m = Head(channels[⟨p, q⟩]) receive the message at head

∧ ∃ r ∈ Proc : r ∈ sent by [m] Some process has sent the message

∧ q /∈ received by [m] Not already received by q

∧ received by ′ = [received by except ! [m] = @ ∪ {q}]
∧ channels ′ = [channels except ! [⟨p, q⟩] = Tail(@)]
∧ unchanged ⟨sent by , sent⟩

Lose(m, p, q)
∆
=

∧ ⟨m.from, q⟩] ̸= ⟨⟩
∧m = Head(channels[⟨m.from, q⟩])
∧ channels′ = [channels except ! [⟨m.from, q⟩] = Tail(@)]

∧ unchanged ⟨sent by, received by⟩

Forward(m, p, q) - forward message m from p to q

Enabling condition - m has been sent by some process, q has received the message, q is not the
sender

Effect - p forwards the message m to its nbrs

Forward(m, p, q)
∆
=

∧ ∃ r ∈ Proc : r ∈ sent by [m] Some process has sent the message

∧ p ̸= q Don’t forward to self

∧m.from ̸= p Sender doesnt forward

∧ ⟨p, q⟩ ∈ Nbrs Forward only to neighbour

∧ p ∈ received by [m] p has received m

∧ p /∈ sent by [m] Don’t forward again

∧ sent by ′ = [sent by except ! [m] = @ ∪ {p}]
∧ channels ′ = [channels except ! [⟨p, q⟩] = Append(@, m)]
∧ unchanged ⟨received by , sent⟩

Next
∆
= ∃ p ∈ Proc, q ∈ Proc, m ∈ Message :

∨ SendTo(m, p)
∨ RecvAt(m, p, q)

∨ Lose(m, p, q)

∨ Forward(m, p, q)

Spec
∆
= ∧ Init

2



∧2[Next ]vars

SendLeadsToRecv
∆
= ∀m ∈ Message: ∀ p ∈ Proc: ∀ q ∈ Proc: (p ∈ sent by[m]) ;

(q ∈ received by[m] ∨ q ̸= m.from)

Liveness specifies that if a message is enabled to be received at p, it is eventually received at p.

Liveness
∆
= ∀ p ∈ Proc : ∀ q ∈ Proc : ∀m ∈ Message : SFvars(RecvAt(m, p, q))

FairSpec
∆
= Spec ∧ Liveness

theorem Spec ⇒ 2TypeInvariant

PBS
∆
= instance P2PBroadcastSpec

theorem Spec ⇒ PBS !Spec

\ * Modification History

\ * Last modified Fri Apr 07 09:28:40 CEST 2023 by kulpreet

\ * Created Sun Mar 05 15:04:04 CET 2023 by kulpreet

3


