
module BlockGeneration
Block generation specifies when and how braidpool miners generate blocks. Block generation
captures how coinbase and UHPO transactions are or updated. The protocol to build current
pool key and threshold signatures is assumed

extends
TLC ,
Sequences,
Integers,
DAG ,
FiniteSets

constant
Miner , Set of miners

ShareSeqNo, Share seq numbers each miner generates

BlockReward , Block reward in a difficulty period

GenesisShare

variables
TODO : Replace these last . ∗ variables with operators on DAG

last sent , Function mapping miner to last sent share seq no

share dag , A DAG with valid shares for now implemented as a set

stable, Set of shares that are stable in the DAG, i .e.received

by all other miners

unpaid coinbases, coinbases for braidpool blocks that

haven t been paid yet

uhpo, Function mapping miner to unpaid balance

pool key , Current public key for TS

chain chain of bitcoin blocks

Share is a record of miner and sequence number. All shares are assumed to be mined at same

difficulty

Share
∆
= [miner : Miner , seq no : ShareSeqNo]

PublicKey is defined as the set of miner identifiers for now. As miners join/leave the network, the
public key immediately changes The protocol to rotate the threshold signature public key is not
speced here.

PublicKey
∆
= Miner

Coinbase is a payment to a DKG public key with an value.

CoinbaseOutput
∆
= [scriptPubKey : Miner , value : BlockReward ]

CoinbaseTx
∆
= [inputs : ⟨⟩, outputs : ⟨CoinbaseOutput⟩]

NoVal
∆
= 0

1



Init
∆
=
∧ last sent = [m ∈ Miner 7→ if m = GenesisShare.miner then 1 else NoVal ]
∧ share dag = [node 7→ {GenesisShare}, edge 7→ {}]
∧ stable = {}
∧ unpaid coinbases = {}
∧ uhpo = [m ∈ Miner 7→ {}]
∧ pool key = {GenesisShare.miner}
∧ chain = ⟨GenesisShare⟩

TypeInvariant
∆
=

∧ last sent ∈ [Miner → Int ∪ {NoVal}]
∧ share dag .node ∈ subset Share
∧ share dag .edge ∈ subset (Share × Share)
∧ stable ∈ subset Share
∧ unpaid coinbases ∈ subset CoinbaseOutput
∧ uhpo ∈ [Miner → subset Share]
∧ pool key ∈ subset Miner
∧ chain ∈ Seq(Share)

vars
∆
= ⟨last sent , share dag , stable, unpaid coinbases, uhpo, pool key , chain⟩

Send a share from a miner with a seqno = last share sent + 1 and in ShareSeqNo. The share is

assumed to be successfully broadcast to all miners.

SendShare(m, sno)
∆
=

∧ sno = last sent [m] + 1
∧ last sent ′ = [last sent except ! [m] = @ + 1]
∧ share dag ′ = [share dag except

Add share to node list of graph

! .node = @ ∪ {[miner 7→ m, seq no 7→ sno]},
Add edge from share to all non NoVal last sent

This can be replaced by last share in DAG from others

! .edge = @ ∪
{[miner 7→ m, seq no 7→ sno]}
×
{[miner 7→ mo, seq no 7→ last sent [mo]] :

mo ∈ {mm ∈ Miner : last sent [mm] ̸= NoVal}}]
∧ unchanged ⟨stable, unpaid coinbases, uhpo, pool key , chain⟩

Stabilise a share if there is a path from the share to any share from all other miners.

How do we know all other miners? This comes from a separate protocol where a miner is dropped
from the set of all other miners.

Miners are dropped from the list if they have not sent shares since the last bitcoin block was
found. For now, we assume the list of to the group of miners is known.

StabiliseShare(s)
∆
=
∧ s /∈ stable

2



∧ ∀m ∈ Miner \ {s.miner} :
∃ p ∈ SimplePath(share dag),

i ∈ 1 . . Cardinality(share dag .node),
j ∈ 1 . . Cardinality(share dag .node) :
∧ Len(p) > 1
∧ i < j
∧ j ≤ Len(p)
∧ p[i ].miner = s.miner
∧ p[j ].miner = m

∧ stable ′ = stable ∪ {s}
∧ unchanged ⟨last sent , share dag , unpaid coinbases, uhpo, pool key , chain⟩

On receiving a bitcoin block miners create a new new bitcoin block they are mining on.

Miners have to create a new coinbase transaction. However, the UHPO transaction remains the
same.

ReceiveBitcoinBlock
∆
=

A miner on braidpool finds a new bitcoin block

1. Include the miner in the pool key

2. Update UHPO payout miners and amount

Some miners can send shares with the old block

FoundBitcoinBlock(share)
∆
=

∧ last sent [share.miner ] = share.seq no
∧ ∀ i ∈ 1 . . Len(chain) : chain[i ] ̸= share
∧ chain ′ = Append(chain, share)
∧ pool key ′ = pool key ∪ {share.miner}
∧ ∀ ss ∈ NodesInSimplePath(share dag ,

chain[Len(chain)],
chain[1]) :

uhpo′ = [uhpo except ! [ss.miner ] = @ ∪ {ss}]
∧ unchanged ⟨stable, last sent , share dag , unpaid coinbases⟩

Next
∆
=
∨ ∃ s ∈ Share :

∨ SendShare(s.miner , s.seq no)
∨ StabiliseShare(s)
∨ FoundBitcoinBlock(s) Any share can be a bitcoin block.

We do not model difficulty or track valid bitcoin flag.

Liveness
∆
= ∀ s ∈ share dag .node : WFvars(StabiliseShare(s) ∨ FoundBitcoinBlock(s))

Spec
∆
=
∧ Init
∧2[Next ]vars

3



FairSpec
∆
= Spec

∧ Liveness

4


